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A note on the Swiss Solvency Test risk measure
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Abstract

In this paper we examine whether the Swiss Solvency Test risk measure is a coherent measure of risk as introduced in Artzner et al. [Artzner,
P., Delbaen, F., Eber, J.M., Heath, D., 1999. Coherent measures of risk. Math. Finance 9, 203–228; Artzner, P., Delbaen, F., Eber, J.M., Heath,
D., Ku, H., 2004. Coherent multiperiod risk adjusted values and Bellman’s principle. Working Paper. ETH Zurich]. We provide a simple example
which shows that it does not satisfy the axiom of monotonicity. We then find, as a monotonic alternative, the greatest coherent risk measure which
is majorized by the Swiss Solvency Test risk measure.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

With the enactment of the new Insurance Supervision Act
on 1 January 2006 in Switzerland, a new risk-based solvency
standard was set for the Swiss insurance industry. At its core
lies the Swiss Solvency Test (SST), which is a principles-
based framework for the determination of the solvency capital
requirement for an insurance company. For more background
on the SST we refer to the official web page of the Swiss
Federal Office of Private Insurance – Topics – SST (Swiss
Federal Office of the Private Insurance, 2007).

Part of the SST framework is the SST risk measure ρSST
which assigns a capital requirement (target capital) to the run-
off of the in force asset–liability portfolio. In this sense, ρSST
is a multiperiod risk measure. At the same time, there has
been a well-established axiomatic theory of risk measures in
the financial and insurance mathematics literature, see e.g.
Artzner et al. (1999), Denuit et al. (2006), Föllmer and Schied
(2004), Kaas et al. (2001), Artzner et al. (2004) and Cheridito
et al. (2006) for the multiperiod case. In this context, it is
worth mentioning that “optimal”, not necessarily coherent,
assessment of risk capital is still the subject of on-going
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research, see for instance Danielsson et al. (2007), Dhaene
et al. (in press), Föllmer and Schied (2002) and Rootzen and
Klüppelberg (1999).

In this paper we examine whether ρSST is a coherent
multiperiod measure of risk in the sense of Artzner et al. (1999)
and Artzner et al. (2004). We provide a simple example which
shows that ρSST does not satisfy the monotonicity axiom. In
fact, ρSST is too conservative. There are situations where the
company is allowed to give away a profitable non-risky part of
its asset–liability portfolio while reducing its target capital. This
is unsatisfactory from the regulatory point of view. We thus find
the greatest coherent multiperiod risk measure ρSST which is
majorized by ρSST, and propose that ρSST be replaced by ρSST.

Since the actual risk measure used in the SST is
a computationally simplifying approximation of ρSST, our
proposal does not directly challenge the current usage of the
SST. However, on the methodological level it does.

The remainder of the paper is as follows. In Section 2 we
give a formal definition of the SST risk measure ρSST within
the appropriate stochastic setup. In Section 3 we provide the
axioms of coherence for multiperiod risk measures and check
whether ρSST satisfies them. A simple example illustrates the
failure of the monotonicity axiom. In Section 4, Theorem 4.1,
we find the greatest coherent risk measure majorized by ρSST,
which is then proposed as an alternative. We conclude with
Section 5 and give an outlook to possible future enhancements
of the SST risk measure. While the proof in Section 4 of
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Theorem 4.1 is elementary and self-contained, we provide in
the Appendix, as a constructive application of Filipović and
Kupper (2007), an alternative proof based on a convex duality
argument.

2. The SST risk measure

Throughout, T ∈ N denotes an arbitrary finite time horizon.
The stochastic basis is given by a probability space (Ω ,F, P)

endowed with a filtration (Ft )
T
t=0 such that F0 = {Ω , ∅} and

FT = F . One should think of Ft as the information available
up to time t .

For t = 0, . . . , T , L∞(Ft ) denotes the space of essentially
bounded random variables on (Ω ,Ft , P). Further,R∞ denotes
the space of essentially bounded stochastic processes on
(Ω ,F, P) which are adapted to the filtration (Ft )

T
t=0. Equalities

and inequalities between random variables and stochastic
processes are understood in the P-almost sure sense. For
instance, two stochastic processes C, D ∈ R∞ are meant to
be equal if for P-almost all ω ∈ Ω , Ct (ω) = Dt (ω) for all
t = 0, . . . , T . For any C ∈ R∞ we write

1Ct = Ct − Ct−1.

The expected shortfall of X ∈ L∞(F) at level α ∈ (0, 1) is
given by

ESα(X) := −
1
α

∫ α

0
qX (s) ds,

where qX (s) = inf{x | P(X ≤ x) > s} denotes the upper
quantile-function of X . It is well-known, see e.g. Föllmer and
Schied (2004), that the expected shortfall as a risk measure
ESα : L∞(F) → R satisfies the respective coherence axioms
(N)–(PH) in Section 3 below for T = 1 (indeed, we consider
C = (C0, C1) 7→ ρ(C) = ESα(C1)).

A core figure for the current discussion on solvency capital
requirements is the target capital (T C). The target capital is
understood as the minimal monetary amount needed for an
insurance company to be sure that the assets at the end of a year
are sufficient to cover the liabilities. Sure in this context means
that even in an unlikely situation (say of a 1% probability) there
is on average enough capital to allow the assets and liabilities to
be transferred to a third party and in addition to this, to provide a
capital endowment for that third party to cover its liabilities and
future capital costs. Consequently, target capital is given by the
sum of the so-called 1-year risk capital (E S) which is to cover
the risk emanating within a one year time horizon and a risk
margin (M) which is defined as the minimal amount that allows
a healthy insurer to take over the portfolio at no additional cost.
In mathematical terms,

T C := E S + M.

In the technical document of the Swiss Solvency Test (Swiss
Federal Office of Private Insurance, 2004) the Swiss Federal
Office of Private Insurance comes forward with a proposal on
how to substantiate the 1-year risk capital and the risk margin in
terms of the risk bearing capital. The risk bearing capital Ct at
date t is given by the difference between the prevailing market
consistent value of assets and the best estimate of liabilities. In
this paper, we shall assume that the process C = (C0, . . . , CT )

of risk bearing capital is an element of R∞. The 1-year risk
capital is then defined as

E S := ESα(1C1) = C0 + ESα(C1),

where α is currently set to 1%. The risk margin is defined as the
cost of future 1-year risk capital

M := β

T∑
s=2

ESα(1Cs),

where β > 0 denotes the spread above the interest rate at which
money can be borrowed and reinvested at no risk. This spread
is specified by the supervisor, and it is currently set to 6% (see
also CEIOPS (2007, I.7.72) in the technical specifications for
the Quantitative Impact Study 3 of CEIOPS).

To sum up,

T C = E S + M

= C0 + ESα(C1) + β

T∑
s=2

ESα(1Cs)

= C0 + ρSST(C),

where

ρSST(C) := ESα(C1) + β

T∑
s=2

ESα(1Cs). (2.1)

The functional ρSST : R∞
→ R defined in (2.1) is

called Swiss Solvency Test risk measure. We note that the
actual risk measure used in the SST is a computationally
simplifying approximation to ρSST, see Swiss Federal Office
of Private Insurance (2004). The latter nevertheless represents
the methodological basis.

3. ρSST — A coherent risk measure?

According to Artzner et al. (2004), Cheridito et al. (2006)
and Vogelpoth (2006), a coherent multiperiod risk measure is
a functional ρ : R∞

→ R which satisfies the following
properties:

• (N) Normalization: ρ(0) = 0
• (M) Monotonicity: ρ(C) ≤ ρ(D), for all C, D ∈ R∞ such

that C ≥ D
• (TI) Translation Invariance: ρ(C +m1[0,T ]) = ρ(C)−m,

for all C ∈ R∞ and m ∈ R
• (SA) Subadditivity: ρ(C + D) ≤ ρ(C) + ρ(D), for all

C, D ∈ R∞

• (PH) Positive Homogeneity: ρ(λC) = λρ(C), for all C ∈

R∞ and λ ≥ 0.

We now check whether these axioms are satisfied by ρSST
which was introduced in (2.1). First, we observe that ρSST
satisfies (PH) since the expected shortfall ESα is positively
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homogeneous. Next, from the translation invariance of the
expected shortfall we derive

ρSST(C + m1[0,T ]) = ESα(C1 + m) + β

T∑
s=2

ESα(1Cs)

= m + ESα(C1) + β

T∑
s=2

ESα(1Cs)

= m + ρSST(C)

for all C ∈ R∞ and m ∈ R, whence (TI) holds. Further, from
the subadditivity of ESα it follows that

ρSST(C + D) = ESα(C1 + D1) + β

T∑
s=2

ESα(1Cs + 1Ds)

≤ ESα(C1) + β

T∑
s=2

ESα(1Cs)

+ ESα(D1) + β

T∑
s=2

ESα(1Ds)

= ρSST(C) + ρSST(D)

for all C, D ∈ R∞, and hence ρSST satisfies (SA). In general
however, ρSST lacks (M) and therefore it is not a coherent risk
measure. Here is a counter-example.

Let T = 2 and consider a stochastic model that consists only
of two future states Ω = {ω1, ω2} such that P(ω1) = P(ω2) =
1
2 . Suppose α < 1

2 . We define the risk bearing capital process

C(ω1) = (0, 0, 0), C(ω2) = (0, 1, 0).

Obviously, we have C ≥ 0. For any s ∈ (0, 1
2 ) we have

qC1(s) = 0 and q1C2(s) = −1, and thus

ESα(C1) = −
1
α

∫ α

0
qC1(s)ds = 0 and

ESα(1C2) = −
1
α

∫ α

0
q1C2(s) ds = 1.

Hence ρSST(C) = β > 0 = ρSST(0) which contradicts (M).
Thus the company should be allowed to replace C by 0 – i.e. to
dispose a profitable non-risky position – while reducing the
target capital. This is unsatisfactory from a regulatory point of
view.

4. A coherent modification of ρSST

The preceding example suggests that the target capital for an
insurance portfolio C can be reduced by disposing a profitable
non-risky position of the portfolio. This suggests that ρSST
is too conservative, and may be replaced by the greatest
coherent multiperiod risk measure ρSST among those which are
majorized by ρSST. Indeed, it is shown in Filipović and Kupper
(2007) that

ρSST(C) = min
D≤C

ρSST(D).

It is thus a remarkable and useful fact that ρSST can be
calculated explicitly:
Theorem 4.1. Suppose β ≤ 1. Then the greatest coherent
multiperiod risk measure among those which are majorized by
ρSST is

ρSST(C) = (1 − β)ESα(C1) + βESα(CT ), C ∈ R∞. (4.2)

Proof. The proof is divided into the following 3 steps:

• First, we show that ρSST majorizes ρSST.
• Second, we observe that ρSST indeed is a coherent

multiperiod risk measure.
• Third, we prove that any coherent risk measure which is

majorized by ρSST in turn is majorized by ρSST.

1st Step. We observe

ρSST(C) = ESα(C1) + β

T∑
s=2

ESα(1Cs)

= (1 − β)ESα(C1) + βESα(C1) + β

T∑
s=2

ESα(1Cs)

≥ (1 − β)ESα(C1) + βESα

(
C1 +

T∑
s=2

1Cs

)
= (1 − β)ESα(C1) + βESα(CT ), (4.3)

for all C ∈ R∞, where the inequality in (4.3) follows from the
subadditivity of ESα . Thus, ρSST majorizes the functional given
in (4.2).

2nd Step. From the respective properties of the expected
shortfall ESα we immediately derive that the functional given
in Eq. (4.2) is a coherent multiperiod risk measure.

3rd Step. First, we consider the case of T = 1 and assume that ρ
is a coherent risk measure which is majorized by ρSST. We have
to show that ρ is also majorized by the coherent risk measure
given in (4.2). To this end, we observe for all C ∈ R∞,

ρ(C) ≤ ρSST(C) = ESα(C1) + β

1∑
s=2

ESα(1Cs)

= ESα(C1)

= (1 − β)ESα(C1) + βESα(C1). (4.4)

The functional in (4.4) is the coherent risk measure given in
(4.2) for T = 1 and hence, the assertion is verified.

Now let T = 2 and ρ be a coherent risk measure majorized
by ρSST, i.e.

ρ(C) ≤ ρSST(C) = ESα(C1) + β

2∑
s=2

ESα(1Cs)

= ESα(C1) + βESα(1C2),

for all C ∈ R∞. (4.5)

Now we fix some C ∈ R∞ and derive from the subadditivity of
ρ

ρ(C) = ρ(C01{0} + C11{1} + C21{2})

≤ ρ(C01{0}) + ρ(C11{1}) + ρ(C21{2}). (4.6)

Successive application of (4.5) to the three summands in (4.6)
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yields

ρ(C01{0}) ≤ ESα(0) + βESα(10) = 0,

ρ(C11{1}) ≤ ESα(C1) + βESα(−C1) = (1 − β)ESα(C1)

and ρ(C21{2}) ≤ ESα(0) + βESα(C2) = βESα(C2).

Summing up both the sides we obtain

ρ(C01{0}) + ρ(C11{1}) + ρ(C21{2})

≤ (1 − β)ESα(C1) + βESα(C2),

and the assertion is proved in the case of T = 2.
The proof for T ≥ 3 is by induction over T . Since we have

already verified the statement in the cases of T = 1 and T = 2
we may start right off with the assumption that for T − 1, ρSST
is given by (4.2). Consider a coherent risk measure ρ such that
for all C ∈ R∞

ρ(C) ≤ ρSST(C) = ESα(C1) + β

T∑
s=2

ESα(1Cs).

We fix some C ∈ R∞, and we decompose it as

C = CT −1
+ 1CT 1{T },

where

CT −1
:= C1[0,T −1] + CT −11{T }

is the process C stopped at time T −1. Subadditivity of ρ yields

ρ(C) = ρ(CT −1
+ 1CT 1{T })

≤ ρ(CT −1) + ρ(1CT 1{T }). (4.7)

As for the first summand in Eq. (4.7), we have

ρ(CT −1) ≤ ρSST(CT −1)

= ESα(C1) + β

T −1∑
s=2

ESα(1Cs)

+ βESα(CT −1 − CT −1)

= ESα(C1) + β

T −1∑
s=2

ESα(1Cs) + βESα(0)

= ESα(C1) + β

T −1∑
s=2

ESα(1Cs).

In view of the induction hypothesis for T − 1 we conclude that

ρ(CT −1) ≤ (1 − β)ESα(C1) + βESα(CT −1).

As for the second summand in (4.7), we have

ρ(1CT 1{T }) ≤ ρSST(1CT 1{T })

= ESα(0) + β

T −1∑
s=2

ESα(10) + βESα(1CT − 0)

= βESα(1CT ).

Combining these two estimates with (4.7) yields

ρ(C) ≤ ρ(CT −1) + ρ(1CT 1{T })

≤ (1 − β)ESα(C1) + βESα(CT −1) + βESα(1CT )

≤ (1 − β)ESα(C1) + β(ESα(CT −1) + ESα(1CT )).

(4.8)
It remains to prove that (4.8) implies

ρ(C) ≤ (1 − β)ESα(C1) + βESα(CT ).

To this end, note that the process C ∈ R∞ was arbitrary. Thus,
the inequality in (4.8) is valid for all processes in R∞ and we
therefore estimate the summands of the decomposition

ρ(C) = ρ(C1[0,T −2] + CT −11{T −1} + CT 1{T })

≤ ρ(C1[0,T −2]) + ρ(CT −11{T −1}) + ρ(CT 1{T }) (4.9)

by means of Eq. (4.8):

ρ(C1[0,T −2]) ≤ (1 − β)ESα(C1) + β(ESα(0) + ESα(10))

= (1 − β)ESα(C1),

ρ(CT −11{T −1}) ≤ ρ((ess.inf CT −1)1{T −1})

≤ (1 − β)ESα(0) + β(ESα(ess.inf CT −1)

+ ESα(−ess.inf CT −1))

= 0 and

ρ(CT 1{T }) ≤ (1 − β)ESα(0) + β(ESα(0) + ESα(CT − 0))

= βESα(CT ).

Plugging these estimates into (4.9) finally yields

ρ(C) ≤ ρ(C1[0,T −2]) + ρ(CT −11{T −1}) + ρ(CT 1{T })

≤ (1 − β)ESα(C1) + βESα(CT )

and the proof is completed for T ≥ 3. �

5. Conclusion

In this paper, we briefly outlined the current SST-approach
towards the quantification of solvency capital requirements
by means of the multiperiod risk measure ρSST. We checked
whether ρSST satisfies the axioms of coherence given by
Artzner et al. (1999) and Artzner et al. (2004), and showed
that ρSST lacks monotonicity in general. We then proposed to
replace ρSST by the greatest coherent risk measure ρSST which
is majorized by ρSST. Our main result (Theorem 4.1) is a closed
form expression for ρSST.

A sound risk assessment within a dynamic multiperiod
framework requires consistency over time. So far, such dynamic
time-consistency aspects (see Artzner et al. (2004), Cheridito
et al. (2006)) have not been taken into account in the SST. In
Vogelpoth (2006), we discuss dynamic time-consistency in the
context of the SST, and a satisfactory solution which masters
the arising difficulties is the subject of on-going research.
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Appendix. An alternative proof of Theorem 4.1

In this section we provide an alternative proof of
Theorem 4.1 based on a convex duality argument, which
builds on the findings of Filipović and Kupper (2007). In fact,
we obtain an extension of Theorem 4.1, see Remark A.1.
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However, this part is not self-contained. For the terminology
and background in convex analysis the reader is referred to
Filipović and Kupper (2007).

In the following we need no restrictions on β ≥ 0. To
simplify the subsequent calculations, we write

ρSST(C) = ρ(C1, 1C2, . . . ,1CT )

for

ρ(X1, . . . , XT ) := ESα(X1) + β

T∑
t=2

ESα(X t ).

We introduce the spaces

E := L∞(F1) × · · · × L∞(FT ),

E∗
:= L1(F1) × · · · × L1(FT ),

and we endow E with the weak topology σ(E, E∗), which
makes (E, E∗) a dual pair. It is well-known, see e.g. Föllmer
and Schied (2004), that ρ : E → R is a lower semicontinuous
convex function. We write 〈µ, X〉 =

∑
t E[µt X t ] for the

duality pairing of µ ∈ E∗ and X ∈ E , and follow the notional
convention µT +1 := 0. Trivially, we then have

〈µ, X〉 =

T∑
s=1

E

[
T∑

t=s
(µt − µt+1)Xs

]

=

T∑
t=1

E

[
E
[
µt − µt+1 | Ft

] t∑
s=1

Xs

]
.

We endow the model space E with the partial order

X � Y ⇔ X − Y ∈ P

implied by the convex cone

P =

{
X ∈ E

∣∣∣∣∣ t∑
s=1

Xs ≥ 0∀t ≤ T

}
.

The polar cone of P is

P∗
:= {µ ∈ E∗

| 〈µ, X〉 ≤ 0 ∀X ∈ P}

= {µ ∈ E∗
| E

[
µt − µt+1 | Ft

]
≤ 0 ∀t ≤ T }.

Obviously, C ≥ D, for C, D ∈ R∞, if and only if C0 ≥ D0
and

(C1, 1C2, . . . ,1CT ) � (D1, 1D2, . . . ,1DT ).

Hence ρSST(C) = ρ(C1, 1C2, . . . ,1CT ) where ρ is the
greatest lower semicontinuous P-monotone coherent risk
measure on E majorized by ρ. From Filipović and Kupper
(2007) we know that

ρ = (ρ∗
+ δ(· | P∗))∗,

where ·
∗ denotes convex conjugation, and δ(· | P∗) the convex

indicator function of P∗. Since ρ is positively homogeneous,
we have ρ∗

= δ(· | domρ∗), where domρ∗ denotes the domain
of ρ∗, and hence

ρ(X) = sup
µ∈domρ∗∩P∗

〈µ, X〉. (A.10)
We thus next have to calculate ρ∗. For X t ∈ L∞(Ft ) convex
duality yields

ESα(X t ) = sup
µ∈Mt

E[µX t ] = δ∗(X t |Mt )

for

Mt := {µ ∈ L1(Ft ) | E[µ] = −1 and − 1/α ≤ µ ≤ 0}.

Since

βδ∗(X t |Mt ) = β sup
µ∈Mt

E[µX t ]

= δ∗(β X t |Mt ) = δ∗(X t | βMt ),

we conclude that

ρ(X) =

T∑
t=1

δ∗(X t | Nt ),

where

Nt :=

{
M1, t = 1
βMt , t ≥ 2.

Hence

ρ∗(µ) = sup
X∈E

T∑
t=1

(
E[µt X t ] − δ∗(X t | Nt )

)
=

T∑
t=1

sup
X t ∈L∞(Ft )

(E[µt X t ] − δ∗(X t | Nt ))

=

T∑
t=1

δ(µt | Nt )

and thus

domρ∗
= N1 × · · · ×NT .

Consequently, the following properties are equivalent:

(i) µ ∈ domρ∗
∩ P∗

(ii) µ ∈ N1 × · · · ×NT and E[µt − µt+1 | Ft ] ≤ 0 for all t
(iii) µ1 ∈M1, µ1 ≤ E[µ2 | F1], β ≤ 1 and µt = βE[ν2 | Ft ]

for all t ≥ 2, for some ν2 ∈MT
(iv) β ≤ 1, µ1 = (1 − β)ν1 + βE[ν2 | F1] and µt = βE[ν2 |

Ft ] for all t ≥ 2, for some ν1 ∈M1, ν2 ∈MT .

In particular, β > 1 implies domρ∗
∩ P∗

= ∅. Combining the
above with (A.10) we infer ρ(X) = sup ∅ = −∞ if β > 1, and

ρ(X) = sup
ν1∈M1,ν2∈MT

(
E[((1 − β)ν1 + βν2)X1]

+

T∑
t=2

E[βν2 X t ]

)

= (1 − β) sup
ν1∈M1

E[ν1 X1] + β sup
ν2∈MT

E

[
ν2

T∑
t=1

X t

]

= (1 − β)ESα(X1) + βESα

(
T∑

t=1

X t

)
if β ≤ 1. Whence Theorem 4.1 follows.
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Remark A.1. In the above proof one can literally replace E
and E∗ by L p(F1)×· · ·×L p(FT ) and Lq(F1)×· · ·×Lq(FT ),
for p ∈ [1, ∞] and q =

p
p−1 , respectively, which extends the

scope of Theorem 4.1.
Moreover, we conclude that β > 1 (an unrealistic spread)

implies that ρSST = −∞, which completes the statement in
Theorem 4.1.
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